If it's not what You are looking for type in the equation solver your own equation and let us solve it.
30x^2-60x-90=0
a = 30; b = -60; c = -90;
Δ = b2-4ac
Δ = -602-4·30·(-90)
Δ = 14400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{14400}=120$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-60)-120}{2*30}=\frac{-60}{60} =-1 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-60)+120}{2*30}=\frac{180}{60} =3 $
| 8(x-3)=6x-2 | | _7/5x+8/5=7x_32 | | 3^(6-3x)=1/27 | | x+9=4x+6 | | C=250+30n | | 20m-16=19m-8 | | 25x^2+45x+8=0 | | m+12=48 | | 60t+30=60t | | (−9)(x)=36 | | 7x-3=7x-6 | | 25=j+12 | | m+45=23 | | 2(−12w−4)+4=−6(4w+1)+7 | | 3x-4(x-2)=2x-7 | | 7x-3=7x+6 | | 5^10x=4^-x+9 | | 26=2g+10 | | 6c-10=10c+22 | | 5x+3(2x+1)=36 | | 5+3(x+2)=26 | | 2(2x+5)=3(x=5) | | X^2/9+1=2x/3 | | (2/3)b+4=-4 | | -6-6x=-3-5x | | 5-6y÷7-7-4.÷3=2 | | (2x+5)+(7x-5)+(×)=180 | | 6x-100/3=4x | | 9x-24=x+40 | | (5x-5)+(x+9)+(2x)=180 | | 26=-4+w/5 | | -12.6y-25.2=50.4 |